

BRIEF COMMUNICATION

Noradrenergic Denervation Attenuates Desipramine Enhancement of Aggressive Behavior in Isolated Mice

KINZO MATSUMOTO,¹ KAZUMA OJIMA AND HIROSHI WATANABE

Division of Pharmacology, Research Institute for Wakan-Yaku (Oriental Medicines), Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama-shi, 930-01 Toyama, Japan

Received 12 May 1994

MATSUMOTO, K., K. OJIMA AND H. WATANABE. *Noradrenergic denervation attenuates desipramine enhancement of aggressive behavior in isolated mice*. PHARMACOL BIOCHEM BEHAV 50(3) 481-484, 1995.—The effects of denervation of central noradrenergic system on the desipramine-induced enhancement of aggressive behavior were examined in long-term isolated mice. Consistent with previous reports, desipramine (10 mg/kg, IP) significantly increased the duration of aggressive behavior in isolated mice. Pretreatment of isolated mice with DSP-4, a selective noradrenaline neurotoxin, significantly attenuated the enhancing effect of desipramine on aggressive behavior without affecting the basal aggressive responses. This effect appeared concomitant with decrease of noradrenaline levels in the cortex, hippocampus, cerebellum and hypothalamus (78%, 75%, 57%, and 17%, respectively). DSP-4 did not significantly affect dopamine or 5-HT levels in these regions. These results suggest that noradrenergic terminals originating mainly from the locus coeruleus play an important role in the desipramine enhancement of aggressive behavior, but not in the basal aggressive behavior of isolated mice.

Aggressive behavior Desipramine DSP-4 Isolation Noradrenaline Locus coeruleus Mice

LONG-TERM social isolation induces aggressive behavior in nonaggressive laboratory mice. The functional changes, in catecholaminergic or serotonergic systems or both, in the brain appear to occur following this manipulation and participate in the appearance of aggressive behavior, although the roles of these neuronal systems in the long-term social isolation-induced aggressive behavior are still controversial [for a review, see (3)]. We have previously reported that desipramine, a selective noradrenaline uptake blocker, increases the duration of aggressive behavior in socially isolated mice, and that this effect is mediated by α_2 - and β_2 -adrenoceptors but not by α_1 - or β_1 -adrenoceptors (9,11). Other antidepressant drugs with ability to block noradrenaline uptake have been shown to have biphasic effects on the isolation-induced aggressive behavior; i.e., increase in aggressive behavior at lower doses and decrease at higher doses (4). These findings raise the possibility that functional changes in the central noradrenergic

system may be induced by long-term social isolation, and that such changes may be closely related to the antidepressant-induced enhancement of aggressive behavior (4,9).

In the present study, we examined effects of DSP-4, a selective noradrenergic neurotoxin, on the desipramine-induced enhancement of aggressive behavior to further clarify the role of noradrenergic system in the social isolation-induced behavioral changes. Part of the present study has appeared in a preliminary form elsewhere (10).

MATERIALS AND METHODS

Isolated Housing

Animals were housed in isolation as described in our previous report (4,9). Briefly, male ddY strain inbred mice, weighing approximately 18–20 g (SLC Co., Shizuoka, Japan) were obtained at the age of 28 days. Mice were isolated in 24 × 17

¹ To whom requests for reprints should be addressed.

TABLE 1
EFFECT OF DSP-4 ADMINISTRATION ON NORADRENALINE, DOPAMINE,
AND SEROTONIN CONTENTS IN THE BRAIN

Regions	Group-Housed	Housing Condition	
		Without DSP-4	With DSP-4
<i>Experiment I, 3 days after DSP-4 injection</i>			
Cortex	NA	0.382 ± 0.012	0.379 ± 0.023
	DA	0.393 ± 0.038	0.360 ± 0.024
	5-HT	0.613 ± 0.057	0.712 ± 0.040
Hippocampus	NA	0.529 ± 0.023	0.521 ± 0.026
	DA	nd	nd
	5-HT	0.886 ± 0.041	0.874 ± 0.035
Hypothalamus	NA	2.137 ± 0.065	1.983 ± 0.068
	DA	0.614 ± 0.047	0.677 ± 0.031
	5-HT	1.519 ± 0.090	1.767 ± 0.084
Cerebellum	NA	0.328 ± 0.020	0.329 ± 0.015
	DA	nd	nd
	5-HT	0.157 ± 0.022	0.180 ± 0.012
<i>Experiment II, 14 days after DSP-4 injection</i>			
Cortex	NA	0.388 ± 0.016	0.425 ± 0.012
	DA	0.192 ± 0.034	0.246 ± 0.042
	5-HT	0.798 ± 0.039	0.901 ± 0.017
Hippocampus	NA	0.537 ± 0.027	0.576 ± 0.020
	DA	nd	nd
	5-HT	0.943 ± 0.042	1.029 ± 0.037
Hypothalamus	NA	2.146 ± 0.061	2.354 ± 0.090
	DA	0.926 ± 0.066	0.775 ± 0.080
	5-HT	1.993 ± 0.095	2.094 ± 0.082
Cerebellum	NA	0.336 ± 0.015	0.378 ± 0.016
	DA	nd	nd
	5-HT	0.194 ± 0.015	0.233 ± 0.030

Each mouse was isolated or group-housed (five mice per cage) for 7 weeks before the experiments. Mice were treated with saline or DSP-4 (50 mg/kg, IP). Three and 14 days after DSP-4 administration, the contents of monoamines in the brain were measured. Each value (μg/g tissue) represents mean ± SEM from 7-8 mice. *p < 0.05, †p < 0.01 compared with DSP-4 untreated group; nd = not detected.

× 12 cm cages for 6-7 weeks before the experiments. Housing conditions were thermostatically maintained at 24 ± 1°C, with a 12 h light/dark cycle. Food and water were given ad lib.

Measurement of Aggressive Responses

Measurement of aggressive behavior has been carried out as previously reported. Briefly, when testing aggressive behavior between isolated mice, two isolated mice were placed in the neutral cage (24 × 17 × 12 cm), which was the same size as their home cage. The duration of biting attacks, wrestling, or both, observed during a 20-min period was measured. The latency to the first attack was also recorded using a keyboard interfaced with a computer (PC 9801NS, NEC, Tokyo, Japan). Effects of drugs on aggressive behavior were evaluated using 7-8 pairs of mice per group.

Treatment with DSP-4

DSP-4 (50 mg/kg) was intraperitoneally (IP) injected to isolated animals to denervate noradrenergic system. Three and

14 days after DSP-4 treatment, the animals were used to test the aggressive behavior, or decapitated to measure noradrenaline levels in the brain.

Measurement of Noradrenaline Levels in the Brain

Three days after the DSP-4 (50 mg/kg, IP) treatment, animals were decapitated, and the brains rapidly removed and washed in ice-cold saline. The frontal cortex, hypothalamus, hippocampus, and cerebellum were dissected on an ice-cold glass plate, and frozen in liquid nitrogen. Noradrenaline contents in these tissues were measured as described in detail in our previous article (2). Briefly, each tissue was homogenized in 1-ml ice-cold 0.25M HClO₄ solution containing 0.3-mg cysteine and an internal standard 3,4-dihydroxybenzylamine. After centrifugation (10,000 g at 4°C for 10 min), the supernatant was mixed with 1 ml of 1.5M Tris-HCl buffer (pH 8.6) solution containing 30-mg acid-washed alumina. After shaking at 4°C for 10 min, the alumina was washed three times with distilled water. Catecholamines adsorbed to the alumina were eluted with 0.3 ml of 0.25M HClO₄ solution containing

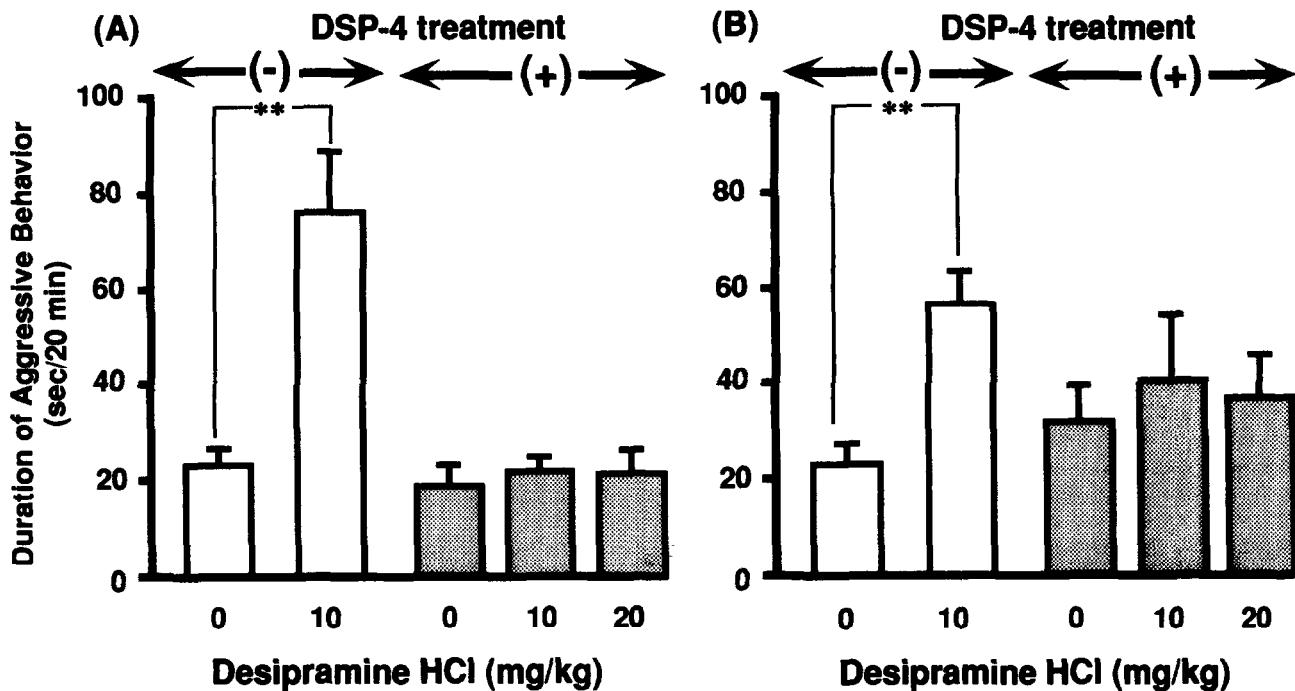


FIG. 1. Attenuation of desipramine-induced enhancement of aggressive behavior by DSP-4 treatment. DSP-4 (50 mg/kg; dotted columns) or saline (open columns) was intraperitoneally (IP) injected to isolated mice 3 (A) or 14 days (B) before the experiments. When testing aggressive behavior, either saline or desipramine was IP injected 60 min before the experiments. Each datum represents the mean \pm SEM of eight pairs of animals. ** p < 0.01 compared with DSP-4 untreated control.

0.1 mg/ml cysteine, and determined using a high performance liquid chromatography with electrochemical detector.

Drugs

Desipramine HCl and DSP-4 HCl [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride; Sigma, St. Louis, MO] were dissolved in saline and injected IP in a constant volume of 0.01 ml/g body weight. Other chemicals were obtained from commercial sources. Desipramine was administered 60 min before the experiments.

Statistics

The data were analyzed with the nonparametric Kruskal-Wallis analysis of variance followed by the Mann-Whitney *U*-test for multiple comparisons between groups. Neurochemical data were analyzed with two-tailed Student's *t*-test. Differences with p < 0.05 were considered statistically significant.

RESULTS

Effect of DSP-4 Treatment on the Noradrenaline Levels in the Brain

As summarized in Table 1, the noradrenaline levels in the cortex, hippocampus, hypothalamus, and cerebellum significantly decreased by 78%, 75%, 17%, and 57%, respectively, at 3 days after administration of DSP-4 (50 mg/kg, IP). The noradrenaline levels in these regions of the DSP-4-treated mice slightly recovered at 14 days after administration, but they were still significantly lower than those of the DSP-4-untreated isolated mice (cortex: 57.9%; hippocampus: 60%; hypothalamus: 23.5%; cerebellum: 53.4%, percent decrease).

Effects of DSP-4 Treatment on the Desipramine-Induced Enhancement of Aggressive Behavior in Isolated Mice

We previously reported that desipramine (5–20 mg/kg) dose dependently increased the duration of aggressive behavior in isolated mice. Consistent with these data, administration of desipramine (10 mg/kg, IP) significantly increased the duration of aggressive behavior in DSP-4-untreated isolated mice (Fig. 1). When tested the aggressive behavior 3 days after administration of either saline or DSP-4 (50 mg/kg, IP) (Fig. 1A), no significant difference in the basal duration of aggressive behavior between DSP-4-treated and vehicle-treated mice was observed. However, desipramine (10 and 20 mg/kg, IP) did not increase the duration of aggressive behavior in the DSP-4 treated isolated mice ($H = 0.275$; $p > 0.05$). Moreover, when examined 14 days after DSP-4 treatment, the basal aggressive responses of the DSP-4-treated mice were slightly but not significantly higher than those of vehicle-untreated mice. Desipramine administration did not significantly affect aggressive behavior in the DSP-4-treated animals ($H = 0.166$; $p > 0.05$) (Fig. 1B).

DISCUSSION

The neurotoxic effect of DSP-4 has been found to be rather selective for noradrenaline-containing nerve terminals, since systemic administration of DSP-4 does not severely affect serotonergic or dopaminergic systems (7,8,12). Consistent with these findings, the present data demonstrated that DSP-4 treatment selectively decreased noradrenaline levels in various regions of brain of isolated mice without affecting dopamine and serotonin contents. Moreover, the effects of the treatment in these regions appeared in the following rank of order: cor-

tex \geq hippocampus $>$ cerebellum $>>$ hypothalamus. These regional differences in noradrenaline depletion are consistent with previous reports by other groups (8), and they are probably due to the fact that DSP-4 treatment preferentially degenerates noradrenaline nerve terminals projecting from the locus coeruleus (1,5-8).

As previously reported (9-11), desipramine administration significantly increased the duration of aggressive behavior in long-term isolated mice. This finding disagrees with the data reported by other groups. For example, Valzelli (15) reported that the same dose of desipramine, as well as imipramine and nortriptyline, did not affect the aggressive behavior induced by isolation in mice. On the other hand, Sofia (14) demonstrated that both desipramine and imipramine attenuated isolation-induced aggressive behavior in mice. The discrepancy between our and their findings still remains unclear, but it may be due to the difference in the analyzing methods of aggressive behavior, or animals strains used, or both.

In the present study, the lesion of noradrenaline nerve terminals produced by DSP-4 markedly attenuated the desipramine-induced enhancement of aggressive behavior. These findings support the hypothesis that noradrenaline accumulated in the synaptic cleft by desipramine plays important roles in the enhancement of aggressive behavior in isolated mice (4), but also suggest the possibility that serotonergic system in the brain does not participate in the antidepressant-induced increase in aggressive behavior in isolated mice.

The functional changes in catecholaminergic system in the brain have been proposed to participate in the appearance of aggressive behavior following long-term social isolation in mice. However, in contrast to the effect on desipramine-induced enhancement of aggressive behavior, the DSP-4 treatment failed to change the basal aggressive responses in isolated mice. These findings disagree with the data reported by Ross and Ogren (13). These authors demonstrated that dopamine- β -hydroxylase inhibitors decreased the aggressive behavior in isolated mice, and that the isolation-induced aggressive behavior required an intact synthesis of noradrenaline. The reason for this discrepancy between their and our findings remains unclear, but it may be due to difference in the selectivity of action of drugs used. Nevertheless, taken into account the fact that the locus coeruleus innervates the regions most severely degenerated by DSP-4 treatment, the noradrenergic nerve terminals, especially those projecting from the locus coeruleus, do not seem to be involved in the pathophysiological mechanisms underlying the appearance of basal aggressive behavior in isolated mice.

ACKNOWLEDGMENTS

The present work was supported in part by a Grant-in-Aid (#04671346) for Science Research from the Ministry of Education, Science and Culture, Japan, and by Foundation for the Promotion of Higher Education in Toyama Prefecture.

REFERENCES

1. Archer, T.; Jonsson, G.; Ross, S. B. A parametric study of the effects of the noradrenaline neurotoxin DSP4 on avoidance acquisition and noradrenaline neurons in the CNS of the rat. *Br. J. Pharmacol.* 82:249-258; 1984.
2. Asakura, W.; Matsumoto, K.; Ohta, H.; Watanabe, H. Involvement of dopamine D₂ receptor mechanism in the REM sleep deprivation-induced increase in swimming activity in the forced swimming test. *Pharmacol. Biochem. Behav.* 48:43-46; 1994.
3. Bell, R.; Hepper, P. G. Catecholamine and aggression in animals. *Behav. Brain Res.* 23:1-21; 1987.
4. Cai, B.; Matsumoto, K.; Ohta, H.; Watanabe, H. Biphasic effects of typical antidepressants and mianserin, an atypical antidepressant, on aggressive behavior in socially isolated mice. *Pharmacol. Biochem. Behav.* 44:519-525; 1993.
5. Fritschy, J.-M.; Grzanna, R. Immunohistochemical analysis of the neurotoxic effects of DSP-4 identifies two populations of noradrenergic axon terminals. *Neurosci.* 30:181-197; 1989.
6. Fritschy, J.-M.; Grzanna, R. Selective effects of DSP-4 on locus coeruleus axons: Are there pharmacologically different types of noradrenergic axons in the central nervous system? In: Barnes, C. D.; Pompeiano, O., eds. *Neurobiology of locus coeruleus*. Amsterdam: Elsevier; 1991:257-268.
7. Hallman, H.; Sundström, E.; Jonsson, G. Effects of the noradrenaline neurotoxin DSP4 on monoamine neurons and their transmitter turnover in rat CNS. *J. Neural Transm.* 60:89-102; 1984.
8. Jonsson, G.; Hallman, H.; Ponzio, F.; Ross, S. DSP-4-(N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine)- a useful denervation tool for central and peripheral noradrenaline neurons. *Eur. J. Pharmacol.* 72:173-188; 1981.
9. Matsumoto, K.; Cai, B.; Satoh, T.; Ohta, H.; Watanabe, H. Desipramine enhances isolation-induced aggressive behavior in mice. *Pharmacol. Biochem. Behav.* 39:167-170; 1991.
10. Matsumoto, K.; Ojima, K.; Cai, B.; Ohta, H.; Watanabe, H. Noradrenergic denervation and chronic desipramine decrease acute desipramine-induced enhancement of aggressive behavior in isolated mice. *Jpn. J. Pharmacol.* 61(supplement I):191 pp; 1993.
11. Matsumoto, K.; Ojima, K.; Ohta, H.; Watanabe, H. β_2 - but not β_1 -adrenoceptors are involved in desipramine enhancement of aggressive behavior in long-term isolated mice. *Pharmacol. Biochem. Behav.* 49:13-18; 1994.
12. Ross, S. B. Long-term effects of N-2-chloroethyl-N-ethyl-2-bromobenzylamine hydrochloride on noradrenergic neurons in the rat brain and heart. *Br. J. Pharmacol.* 58:521-527; 1976.
13. Ross, S. B.; Ogren, S.-O. Anti-aggressive action of dopamine- β -hydroxylase inhibitors in mice. *J. Pharm. Pharmacol.* 28:590-592; 1976.
14. Sofia, R. D. Effects of centrally active drugs on four models of experimentally induced aggression in rodents. *Life Sci.* 8:705-716; 1969.
15. Valzelli, L. The "isolation syndrome" in mice. *Psychopharmacologia (Berl.)* 31:305-320; 1973.